
jSummit Preliminary Technical Manual

Note: This is a preliminary Technical Manual – it does not contain the UML diagrams and other visual
aides nor any functioning code at the present moment but will once all details have been finalised – this is
just a guide to how the project MAY be tackled

1. Introduction and Summary of constraints

a. jSummit will be a Peer-to-Peer program that will use Threaded connections and a central
server to help the program run smoothly. Programs will connect to one another using TCP/IP
protocol and will send packets with various wrappers to one another

b. Their are a few Risks and Uncertainties at this point in time.
- Risks: backwards compatibility, reliance on TCP connections, being thread safe,

mutexes, semaphores, etc
- Uncertainties: OS operations, using APIs and other modules, performance

c. The user requires: -easy to understand GUI
- functionality [see User Manual]
- reasonable speed
- resources of computer to be used effectively
- flexibility
- password security

2. Recommended Approach
a. Constantly testing and revising the program including the development of prototypes in

stages. We will be returning to lower priority requirements once the main functionality has
been reached

b. Development environment will be Sun’s Java runtime environment with the aid of SWING,
AWT, JMF for all media streams (Video and Audio) using media capture and streaming media

c. Software tools will be using: Java SDK 1.5.0 runtime development environment along with
IDE jCreator, Sun’s JMF (Java Media Framework) – though the end user will need a Java
compiler on their computer in order to run the program

d. Target Hardware/Software will be PC’s including those running Windows and Linux and will
port to Mac users at a later date

Page # 1

http://jsummit.sourceforge.net

jSummit Preliminary Technical Manual

3. Implementation
Overall Diagram of the connections between the components:

a. Main CORE

Connection to a Room
Upon Connection to another CORE module – the new client receives Room Details including the current
User List – the CORE then processes this user list and sets up the display panels with the information
- the Server then sends the already connected users the details of this new user and they all update their
displays as well – this would be a “NEW User Packet”

Module interactions

The above diagram shows how the wrapping of data occurs where the Module wraps its data in its own
packet then the CORE wraps it in a CORE packet (details below) – this information is then sent through
the Server program which has connections to each of the clients and passes the packet through – the
Server does not wrap the packet at all it just passes it on. What happens is that a Module wraps its
packet and puts a Username destination – the core reads where the packet is from and wraps it in its
own structure with the following parameters

Page # 2

jSummit Preliminary Technical Manual

The Packet will then be sent via a threaded server to the desired location though the up running TCP
connection – a response will then be received from the recipient and if an error response is received then
the packet is resent depending on the type of packet (i.e. Chat packets will be resent whilst, Video
streams won’t).

Video and Audio streaming generally needs its own connection because it relies on UDP, the CORE will
terminate a connection to a client if the client’s CORE drops out – i.e. if a CORE drops out the server
CORE will shut down all other connections to this user

b. Profile and Room Selection/Generation

Start-up
Initial Start-up

1. Load configuration spawn server thread
2. Setup display (keep it hidden)
3. Display logo and progress bar
4. Show join/create options
5. Proceed to end
6. End

When a Client Starts:

1. Multicasts a broadcast query for any available servers (may be able to accept a direct IP connection)
2. Waits 3-4 seconds for response – no response spawns server thread
3. If there is a response, or several, records IP’s then requests to the rooms that are hosting and

discovers list of members and if password protected
4. Initiate a connection with the room to join it
5. Once connected continue until finished – log out to disconnect

Profile Creation and Editing
- Details will be stored of previous profiles in a flat file that will be opened and exampled upon initiation of
function
The data will be stored in XML format:

<PROFILE><USERNAME>InputName</USERNAME>
 <LOCATION>Location</LOCATION>
 <COMPANY>Company</COMPANY>
 <REALNAME>Real Name</REALNAME>
 <EMAIL>email@jsummit.net</EMAIL>
 <CONNECTION>56Kb</CONNECTION>
 <VIDEO>T</VIDEO><AUDIO>T</AUDIO><WHITEBAORD>T</WHITEBOARD>
</PROFILE>

Inetaddr UserIP //fetched from the User list details
string ModuleID //sent from the module itself
int Size //the total size of the packet to be sent
Time Time //time packet has been sent by CORE
Object DataPacket //Packet already wrapped by the Module
Page # 3

jSummit Preliminary Technical Manual

- The records will be parsed and added to an in-memory database where the user can select which one
to use – any modifications will be written back to the flat file – the file will be rewritten completely if any
changes are made.

- Once a record has been chosen this will be stored as part of the Profile class that consists of:

class Profile {
 public Profile();
 public Profile(stUsername, stCompany, stLocation, stRealName, boVideo,
boAudio, boWhiteboard, iConnection);
 private String Username;
 private String Company;
 private String Location;
 private String RealName;
 private bool Video;
 private bool Audio;
 private bool Whiteboard;
 private int Connection;
 //appropriate Get and Set functions will also be here
}

Room Creation and Use
-If creating the room the room will be stored in a similar like structure to the profile though it will contain a
pointer to the user list (rest of the design will be completed once we get the CORE written)
- add Password field to the class – though it can be empty – this room creation details are analysed once
a connection is made and the details are packaged and sent back to the client

User List
User list will probably be a hash table or a vector list that is a mapping of UserName to IP Address –
every client will have a copy of it and they will use this list to direct where packets will be going – though
it will be a global variable so all modules will be able to see it

c. Video

Introduction

Underlying infrastructure of the video conferencing will be using the JMF API provided for Java by Sun
Microsystems.

Connection Setup
When a chat room is setup, the video module retrieves the list of chat participants in the room.

RTP connections will be then established between the users, this will make use of the RTPSession,
SendStream, and ReceiveStream classes of the JMF API

The video source will make use of JMF’s DataSource class, this class allows java to open video devices
on the client machine.

Note
Unlike other modules, this module communicates directly with the users, this simplifies the packets
between the cores. If a users computer crashes then the core will notify the video modules that the user
has left/timed out, and to close the streaming session to the users.

Page # 4

jSummit Preliminary Technical Manual

Diagram of communications

These lines indicate
video (RTP) Streams

This diagram
does not
include core
graphic

User information and
call dropout info

Video Module

jSummit Core

User information and
call dropout info

User 3

Video Module

jSummit Core

User information and
call dropout info

User 1

Video Module

jSummit Core

User 2

d. Audio
YET TO BE FINIALISED Will work in a similar way to Video – once we get video going we will analyse
the Audio section as well

e. Poll
Suggested Protocol & Ideas for Vote / Poll Implementation

Firstly ideas surrounding the vote and poll implementation centres around it being a module, capable of
being plugged in, enabled, disabled e.t.c. This goes along with the idea of our central core of the project
being a central point of focus for all interaction of clients within the conference / summit and its
capability of despatching tasks / packets of data to the relevant handlers.

The voting and polling capabilities that are to be implemented in the final product include the following:

• A single selection vote / poll (Casting a vote, where you can select one only).
• A selection vote where you must prioritise ALL of the options (give them a rank from most preferred

to least, generally with numbers).
• A multi selection vote which defines the following (this one differs from the above, as you are not

required to prioritise ALL of the selections, although it can be done if so desired) –
o Able to select at least one or more of the options in no particular rank (multi select – no

preference)

Page # 5

jSummit Preliminary Technical Manual

o Same as above, but being able to select based on a preference or priority (multi select –
preference / priority)

Ok, starting with some sort of basis of implementation I have the following ‘structures’ (or classes) to
help implement the basis of the voting and polling system.

- Please note this is preliminary and may not be functional or operational, also actual code

implementation has not been done, just some of the basic function declarations and such -

cl

sim

};

cl

};

class Vote {
 public static final int VOTE_SINGLE = 0,
 VOTE_ALL = 1,
 VOTE_MULTI_NOPREF = 2,
 VOTE_MULTI_PREF = 3;

 private String descStr; // A description string for the vote.
 private Vector vOptions;
 private Vector vSelected;
 private int selected;

 private int voteType; // e.g. VOTE_SINGLE e.t.c.
 private int keyID; // Unique identifier for this vote.

 public String getDescription();

 public Vector getOptions(); // Returns vector of vote options.
 public int getVoteType(); // Returns an integer to describe type.
 public boolean setSelected(Vector vSelectedSlots); // Will return a true for a
valid vote, false otherwise.

 private Boolean isValidVote(Vector vSelectedSlots);
};

That is a very basic layout of the class to contain a vote structure (it is by no means yet complete, just a
base to work on).

As for transmission using a protocol over the net it will basically use a standard TCP/IP socket (or in our
case be wrapped within a core data packet). It will contain possibly a transmission object like so: -

ass VoteQuestionPacket {

int keyID; // A unique identifier so the client can respond to more than one vote
ultaneously.

// The following variables will basically be taken to be the same as in the ‘Vote’ class.
String descStr;
Vector vOptions;
int voteType;

ass VoteAnswerPacket {

int keyID; // This will be the same as the keyID of the originating vote.
Vector vSelected; // This will contain multi results.
int selected; // This will work for a vote that needs only one response.

Page # 6

jSummit Preliminary Technical Manual

The originator of the packet (person who is organizing the vote) will send out the VoteQuestionPacket,
and the person/s sending back responses will use the VoteAnswerPacket structure to respond.

This is still preliminary and some bugs, methods need to be ironed out.

Also on the originating clients end we will need a storage structure to encapsulate and keep track of
votes that have been returned. An idea for the container would be as follows:

f.
class VoteResults {

 int keyID; // Unique identifier for the vote responses to match to.
 Vector vResultTally; // Count of votes in slots.
}

- Still working on this bit. -

Whiteboard

The Whiteboard module implements an arbitrary number of shared whiteboards, where vector-based
graphics can be drawn. Although the user may specify a small region to view, the whiteboard has no
fixed size, with the coordinate (0, 0) being at the top left of the whiteboard, and extending in each
direction as far as the precision of an unsigned integer will allow.

Whiteboards may be classified as public (readable and writeable by all), semi-public, (readable by all,
writeable by a select group), and private (only readable and writeable by selected users). For security,
semi-public whiteboards have an associated owner, and a client will only accept information from the
owner. Authorised members submit data packets to the owner, who broadcasts them.

Each client maintains a personal list of whiteboards available to them, since they also maintain their own
copy of the whiteboard. The server also maintains a list of used whiteboard ID numbers and is
responsible for generating and allocating new ones, to prevent collisions.

The preliminary whiteboard packet is described below:

WBPacket:
inetaddr author //Generally, the sender of the packet
unsigned int objectID //Sender-generated identifier for the object or command
string timestamp //Timestamp for packet
unsigned int whiteboardID //Whiteboard number
enum commandID //Command ID

 object data //Command arguments

For a specific operation (operations may require multiple packets to complete) author and objectID form
a unique identifier.

Commands are mapped onto command codes, and their arguments are given as the "data" object. A
client receiving a packet will be able to determine the structure of the data object by the command code.

Preliminary command list:

Page # 7

jSummit Preliminary Technical Manual

request_whiteboard_list();

Request a listing of all public/semi-public whiteboards. Usually this command is sent by a newly joined
client to the Summit, however, if directed at another peer, the listing will include the private whiteboards
that the requestor is part of.

send_whiteboard_list(WBID whiteboard, enum public, inetaddr member, bool
owner);

(see "List Handling" below)
Sends the information of one whiteboard. If the whiteboard is public, the member part will be null, and
owner disregarded. If the whiteboard is semi-public or private,

request_whiteboard_dump(WBID whiteboard);
Request a complete dump of a whiteboard, useful for a newly joined client to the Summit.

send_whiteboard_dump(WBPacket object);
(see "List Handling" below)
Sends a complete listing of packets (one packet at a time) that make up the requested whiteboard.

end_of_list();
(see "List Handling" below)
Signals the end of a list.

request_whiteboard();
Sent to the server to reserve a Whiteboard ID, which will be used to create a new whiteboard.

alloc_whiteboard(WBID newWBID);
Sent by the server, this is a newly generated and reserved whiteboard ID.

List handling:
1. Requestor submits request for a list/dump with unique objectID
2. Requestee sends individual list elements with requestor as author and
requestor's objectID as objectID
3. Requestee sends end_of_list() command with client's author/objectID

Drawing commands:
Some of the drawing commands share a few common attributes:

(enum) brush:

Defines the shape used to paint on the whiteboard with. This is an enumeration, with the following values
CIRCLE
SQUARE
HLINE (horizontal line, 1 pixel tall)
VLINE (vertical line, 1 pixel wide)

(unsigned int) size:
Used with "brush", this is the diameter or width of a circle or square brush, or the height or width of either
of the line brushes.

(color) colour, colour1, colour2:
The colour of the drawn object. When two are defined, colour1 is the colour of the border of the object,
and if "fill" is set, colour2 is the colour it is filled with (otherwise it is ignored)

(bool) fill:
An indicator of whether a shape is filled with colour2

Page # 8

jSummit Preliminary Technical Manual

(unsigned int) x, x1, x2, y, y1, y2
These are x- and y-coordinates of the drawn object, when two pairs are defined, they form opposite
corners of the rectange that the shape is drawn to fit inside.

dot(colour, brush, size, x, y);
Places a single instance of the brush shape/size at the coordinates specified. If the mouse is dragged,
multiple dots are drawn. To help avoid network congestion, dots are not drawn for every pixel the cursor
is dragged over. Instead, the mouse location is sampled several times per second.

highlight(colour, brush, size, x, y);
Same as dot, but drawn with a fixed translucency (i.e. drawing over a previously highlighted area will not
darken the highlight)

line(colour, brush, size, x1, y1, x2, y2);
Draws a line from the first pair of coordinates to the second.

ellipse(colour1, colour2, size, fill, x1, y1, x2, y2);
Draws an ellipse within the rectangle defined by the coordinate pairs.

rect(colour1, colour2, fill, x1, y1, x2, y2);
Draws a rectangle between the specified coordinates

graphic(graphic, x1, y1, x2, y2);
Inserts a graphical object "graphic", resized to fit in the rectangle defined by the coordinates

erase(author, objectID);
Erases the object defined as (author, objectID)

textbox(x, y, font, colour, size, string text);
Defines the top left corner of an area of text.

laserpointer(colour, x, y);
A "laser pointer" function, which is a fixed-size translucent brush, which is not saved as part of the
whiteboard, but can be moved in realtime (i.e. as long as the mouse button is held). Used to point at
areas of the whiteboard.

laserpointer_off();

Stops the laser pointer from being drawn.

g. Chatting and File Sharing

General Chatting
One ‘host’ runs and owns the general chat room. As such all chat is done through this node. Upon a
person join, the host will store the person into a dynamic array of char[]’s.

This data will be used to direct traffic. For example,

Page # 9

jSummit Preliminary Technical Manual

This is what a typical chat service would look like, with B hosting the chat room. If A would like to
send a message to the chat room, then it sends a chat packet (see below) to B. B then sends this packet
to all the people, via its array. Hence every node will receive the message.
The messages sent by people, are sent through the network in the following type:

This packet structure gets sent to the core, which will then pack it up, and send it to the chat room host,
who will then distribute the message to the other people.

Private Chatting

Private Chatting is done in the same way as General Chatting, however there is no host to host a
room. It is simply one node connected to the other node, and it will use the following structure

Whether it be private of general chatting, in either case, the packets are handed to the core, and the core
holds the user list with the IP’s, matches the user/nicknames to the IP’s and sends them off
appropriately.

File Sending
File sending is built into the Chat module, via selecting the ‘send a file’ button. This will be done with
RandomAccessFile(), and FileWriter().

On side that is sending the file, a RandomAccessFile object is created. From this, the entire file is read
into an array, which is sent to the core for sending. One the receiving side, the complete opposite occurs.
It receives the object, unpacks it, checks the length, creates a file of that length, and then writes the
bytes to the file, resulting in a copy of the file. The packet that will hold this file is as follows:

and on
begins

Note:

class file_packet {
 private RandomAccessFile aFile;

private String desitination_username;
private String source_username;

}
class Private_Chat_Packet {
private String desitination_username;
private String source_username;
private String message;

}
class General_Chat_Packet {
private String username;
private String message;

}
 the receiving end, it will simply accept this object, and then create its FileWriter() object, and
 the write the file.

All of the Implementation ideas above are subject to change and probably most will be changed.

Page # 10

jSummit Preliminary Technical Manual

4. Implications
a. Project products: Functioning Peer-to-peer program that has video, audio conferencing,

chatting, whiteboards and a poll function that uses TCP connections and a usable ‘funky’ GUI.
It will be a free alternative that combines functionality

b. Will be free to modify and upgrade once the final project has been delivered and completed

[TO BE ADDED]
- A Bunch of the code – exact and more specific details on the protocols that will be used once some code has
been trailed and explored
- UML class diagrams and sequence diagrams to help add a visual element to the design
- Maybe even some formal descriptions
- In-depth usage of the JMF functions
- A link to the full Source Code because it is GPL
- Index and groovy side icons for each of the sections

Page # 11

	jSummit Tech Manual
	Note
	Introduction and Summary of constraints
	Recommended Approach
	Implementation
	Main CORE
	Profile and Room Selection/Generation
	Video
	Audio
	Poll
	Whiteboard
	Chatting and File Sharing
	Implications
	To Be Added

